Sunday, 25 September 2016

Why don't you just

I'm solution oriented. If I hear about a problem, I like to make suggestions about how it can be resolved. Sometimes before people have even stopped speaking, my brain is spinning on ideas.

As a coach and mentor, this trait can be a problem. Thinking about solutions interferes with my active listening. I can't hear someone properly when I'm planning what I'll say next. I can neglect to gather all the context to a situation before jumping in with my ideas. And when I offer my thoughts before acknowledging those of the person who I'm talking to, I lack empathy.

Earlier in my career I was taught the GROW model, which is a tool that has been used to aid coaching conversations since the 1980s. GROW is an acronym that stands for goal, reality, options, way forward. It gives a suggested structure to a conversation about goal setting or problem solving.

When I jump to solutions, I skip straight to the end of the GROW model. I'm focusing on the way forward. While I do want my coaching conversations to end in action, I can end up driving there too fast.

Pace of conversation is a difficult thing to judge. I've started to use a heuristic to help me work out when I'm leaping ahead. If I can prefix a response with "Why don't you just" then it's likely that I've jumped into solution mode alone, without the person that I'm speaking to.

Why don't you just ask Joan to restart the server?

Why don't you just look through the test results and see how many things failed?

Why don't you just buy some new pens?

"Why don't you just" is the start of a question, which indicates I'm not sure that what I'm about to say is a valid way forward. If I'm uncertain, it's because I don't have enough information. Instead of suggesting, I loop back and ask the questions that resolve my uncertainty.

"Why don't you just" indicates an easy option. It's entirely likely that the person has already identified the simplest solutions themselves. Instead of offering an answer that they know, I need to ask about the options they've already recognised and dismissed. There are often many.

"Why don't you just" can also help me identify when I'm frustrated because the conversation is stuck. Perhaps the other person is enjoying a rant about their reality or cycling through options without choosing their own way forward. Then I need to ask a question to push the conversation along, or abandon it if they're simply talking as a cathartic outlet.

This prompt helps me determine the pace of a conversation. I can recognise when I need to slow down and gather more information, or when a conversation has stalled and I need to push the other person along. Perhaps "Why don't you just" will help others who are afflicted with a need for action.

Sunday, 18 September 2016

Going to a career

My father-in-law works in HR. A few years ago when I was thinking about changing jobs, he gave me a piece of advice that stuck. He said:

"People are either leaving a job or going to a job. Make sure you're going to something."

Sometimes you're changing jobs primarily to escape your current situation. You might have an unpleasant manager or colleagues, feel that you're being paid unfairly, find your work boring or the working conditions intolerable. You're searching for something else. You're leaving a job.

On the other hand, sometime's you're changing jobs in active pursuit of the next challenge. You might be looking to gain experience in a new industry, for a new role within your profession, or for a greater level of responsibility in your existing discipline. You're searching for something specific. You're going to a job.

These two states aren't mutually exclusive, obviously you might have reasons in both categories. But his advice was that the reasons you're going to a job should always outweigh the reasons that you leave your existing one.

When I reflect on my career, I have definitely changed jobs in both situations. But it has been those occasions where I've moved towards a new role, rather than escaping an old one, that have propelled my career forward. The decisions that I've made consciously in pursuit of a broader purpose, rather than as a convenient change in immediate circumstance, have always served me best.

I find myself regularly sharing this same advice with others who are considering their career. If you're thinking about what's next, make sure you're going to something. Deliberate steps forward are how we grow and challenge ourselves.

Sunday, 4 September 2016

The end of the pairing experiment

I have spoken and written about the pairing experiment for sharing knowledge between agile teams that I facilitated for the testers in my organisation. After 12 months of pairing, in which we saw many benefits, I asked the testers whether they would like to continue. The result was overwhelming:

Survey Results

I had asked this same question regularly through the experiment, but this was the first time that a majority of respondents had asked to stop pairing. As a result, we no longer do structured, rostered, cross-team pairing.

Why?

The first and most obvious reason is above. If you ask people for their opinion on an activity that they're being instructed to undertake, and they overwhelmingly don't want to do it, then there's questionable value in insisting that it happens regardless. Listen to what you are being told.

But, behind the survey results is a reason that opinion has changed. This result told me that the testers believed we didn't need the experiment anymore, which meant they collectively recognised that the original reason for its existence had disappeared.

The pairing experiment was put in place to address a specific need. In mid-2015 the testers told me that they felt siloed from their peers who worked in different agile teams. The pairing experiment was primarily focused on breaking down these perceived barriers by sharing ideas and creating new connections.

After 12 months of rostered pairing the testers had formed links with multiple colleagues in different product areas. The opportunity to work alongside more people from the same products offered diminishing returns. Each tester already had the visibility of, and connection to, other teams.

Additionally, our pairing experiment wasn't happening in isolation. Alongside, the testers within particular product areas started to interact more frequently in regular team meetings and online chat channels. We also started meeting as an entire testing competency once a week for afternoon tea.

The increased collaboration between testers has shifted our testing culture. The testers no longer feel that they are disconnected from their colleagues. Instead there's a strong network of people who they can call on for ideas, advice and assistance.

The pairing experiment achieved its objective. I'm proud of this positive outcome. I'm also proud that we're all ready to let the experiment go. I think it's important to be willing to change our approach - not just by introducing new ideas, but also by retiring those that have fulfilled their purpose.

Now that we've stopped pairing, there's time available for the next experiment. I'm still thinking about what that might be, so that our testing continues to evolve.

Thursday, 18 August 2016

Post-merge test automation failures

Recently we implemented selenium grid for one of our automated suites. I've written about our reasons for this change, but in short we wanted to improve the speed and stability of our automation. Happily we've seen both those benefits.

We've also seen a noticeable jump in the number of pull requests that are successfully merged back to our master branch each day. This gives some weight to the idea that our rate of application code change was previously impeded by our test infrastructure.

The increase in volume occasionally causes a problem when two feature branches are merged back to master in quick succession. Our tests fail on the second build of the master branch post-merge.

To illustrate, imagine that there are two open pull requests for two feature branches: orange and purple. We can trigger multiple pull request (PR) builds in parallel, so the two delivery teams who are behind these feature branches can receive feedback about their code simultaneously.

When a PR build passes successfully and the code has been through peer review, it can be merged back to the master branch. Each time the master branch changes it triggers the same test suite that executes for a pull request.

We do not trigger multiple builds against master in parallel. If two pull requests are merged in quick succession the first will build immediately and the second will trigger a build that waits for the first to complete before executing. Sometimes the second build will fail.

1. Failing tests after multiple PR merges to master

As the person who had driven sweeping test infrastructure changes, when this happened the first time I assumed that the test automation was somehow faulty. The real issue was that the code changes in orange and purple, while not in conflict with each other at a source code level, caused unexpected problems when put together. The failing tests reflected this.

We hadn't seen this problem previously because our pull requests were rarely merged in such quick succession. They were widely spaced, which meant that when the developer pulled from master to their branch at the beginning of the merge process these type of failures were discovered and resolved.

I raised this as a topic of conversation during Lean Coffee at CAST2016 to find out how other teams move quickly with continuous integration. Those present offered up some possible options to resolve the problem as I described it.

Trunk based development

Google and Facebook move a lot faster than my organisation. Someone suggested that I research these companies to learn about their branching and merging strategy.

I duly found Google's vs Facebook's Trunk Based Development by Paul Hammant and was slightly surprised to see a relevant visualisation at the very top of the article:


2. Google's vs Facebook's Trunk Based Development by Paul Hammant

It seems that, to move very quickly with a large number of people contributing to a code base, trunk-based development is preferred. As the previous diagram illustrates, we currently use a mainline approach with feature branches. This creates larger opportunities for conflicts due to merging.

I had assumed that all possible solutions to these tests failing on master would be a testing-focused. However, a switch to trunk-based development would be a significant change to our practices for every person writing code. I think this solution is too big for the problem.

Sequential build

Someone else suggested that perhaps we were just going faster than we should be. If we weren't running any build requests in parallel and instead triggered everything sequentially, would there still be a problem?

I don't think that switching to sequential builds would fix our issue as the step to trigger the merge is a manual one. A pull request might have successfully passed tests but be waiting on peer review from other developers. In the event that no changes are required by reviewers, the pull request could be merged to master at a time that still creates conflict:

3. Sequential PR build with rapid merge timing

The pull request build being sequential would slow our feedback loop to the delivery teams with no certain benefit.

Staged Build

Another suggestion was to look at introducing an interim step to our branching strategy. Instead of feature branches to master, we'd have a staging zone that might work something like this:

4. Introducing a staging area

The staging branch would use sequential builds. If a test passes there, then it can go to master. If a test fails there, then it doesn't go to master. The theory is that master is always passing.

Where this solution gets a little vague is how the staging branch might automatically rollback a merge. I'm not sure whether it's possible to automatically back changes off a branch based on a test result from continuous integration. If this were possible, why wouldn't we just do this with master instead of introducing an interim step?

I'm relatively sure that the person who suggested this hadn't seen such an approach work in practice.

Do Nothing

After querying the cost of the problem that we're experiencing, the last suggestion that I received was to do nothing. This is the easiest suggestion to implement but one that I find challenging. It feels like I'm leaving a problem unresolved.

However, I know that the build can't always pass successfully. Test automation that is meaningful should fail sometimes and provide information about potential problems in the software. I'm coming to terms with the idea that perhaps the failures we see post-merge are valuable, even though they have become more prevalent since we picked up our pace.

While frustrating, the failures are revealing dependencies between teams that might have been hidden. They also encourage collaboration as people from across the product work together on rapid solutions once the master branch is broken.

While I still feel like there must be a better way, for now it's likely that we will do nothing.



Other posts from CAST2016:

Friday, 12 August 2016

Human centered test automation

The opening keynote at CAST2016 was Nicholas Carr. Though his talk was live streamed, unfortunately a recording is not going to be published. If you missed it, much of the content is available in the material of a talk he delivered last June titled "Media takes command".

Nicholas spoke about typology of automation, the substitution myth, automation complacency, automation bias and the automation paradox. His material focused on the application of technology in traditionally non-technical industries e.g. farming, architecture, personal training.

As he spoke, I started to wonder about the use of automation within software development itself. Specifically, as a tester, I thought about the execution of test automation to determine whether a product is ready to release.

Automation providing answers

Nicholas shared an academic study of a group of young students who were learning about words that are opposite in meaning e.g. hot and cold. The group of students were divided in two. Half of the students received flashcards to study that stated a word with the first letter of it's opposite e.g. hot and c. The other half of the students received flashcards that stated both words in their entirety e.g. hot and cold.

The students who were in the first group performed better in their exam than those in the second group. Academics concluded that this was because when we need to generate an answer rather than simply study an answer, then we are more likely to learn it. This phenomenon is labelled the generation effect.

On the flip side, the degeneration effect is where the answers are simply provided, as in many automated solutions. Nicholas stated that this approach is "a great way to stop humans from developing rich talents".

It's interesting to consider which of these effects are most prevalent in processing the results provided by our continuous integration builds. I believe that the intent of build results is to provide an answer: the build will pass or fail. However, I think the reality of the result is that it can rarely be taken at face value.

I like to confirm that a successful build has truly succeeded by checking the execution time and number of tests that were run. When a build fails, there is a lot of investigative work to determine the real root cause. I dig through test results, log files and screenshots.

I have previously thought that this work was annoying, but in the context of the degeneration effect perhaps the need to manually determine an answer is how we continue to learn about our system. If continuous integration were truly hands-off, what would we lose?

Developing human expertise

Nicholas also introduced the idea of human centered automation. This is a set of five principles by which we see the benefits of automation but continue to develop rich human expertise.

  1. Automate after mastery
  2. Transfer control between computer and operator
  3. Allow a professional to assess the situation before providing algorithmic assistance
  4. Don't hide feedback
  5. Allow friction for learning

This list is interesting to consider in the context of test automation. The purpose of having test automation is to get fast feedback, so I think it meets the fourth point listed above. But against every other criteria, I start to question our approach.

When I think about the test automation for our products, there is one suite in particular that has been developed over the past five years. This suite has existed longer than most of our testers have been working within my organisation. There is logic coded into the suite for which we no longer have a depth of human expertise. So we do not automate after mastery.

The suite executes without human interaction, there is no transfer of control between computer and operator. Having no tester involvement is a goal for us. Part of providing rapid feedback is reliably provide results within a set period of time regardless of whether there is a tester available.

The suite provides a result. There is human work to assess the result, as I describe above, but the suite has already provided algorithmic assistance that will bias our investigation. It has decided whether the build has passed or a failed.

Finally, the suite is relatively reliable. When the tests usually pass, there is no friction for learning. When the tests are failing and flaky, that is when testers have the opportunity to deeply understand a particular area of the application and associated test code. This happens, but ideally not very much.

So, what are the long term impacts of test automation on our testing skills? Are we forfeiting opportunities to develop rich human expertise in testing by prioritising fast, reliable, automated test execution?

I plan to think more about this topic and perhaps experiment with ways to make our automation more human centered. I'd be curious to hear if other organisations are already exploring in this area.



Other posts from CAST2016:

Thursday, 11 August 2016

Fostering professional development

One of the sessions that I attended at CAST2016 was titled "How do I reach the congregation when I'm preaching to the choir?" presented by Rob Bowyer and Erik Davis. One of the main themes of discussion focused on whether people should "sell" professional development to their colleagues or team.

In the introduction to the session, Rob and Erik spoke a little bit about their own contexts. They shared some of the challenges that they've encountered in trying to foster a culture of professional development in both their organisations and their local testing community.

Two particular challenges stuck out for me and I noted them down. Firstly, that "most of the people didn't care" about professional development. Secondly, that "I've been struggling to get people to see the value" in professional development. It struck me that these two challenges in creating a culture of learning could be related.

Do I see value?

I have an ISTQB Foundation certificate. I did this early in my career because I believed that getting this qualification was necessary to find employment in the software testing field. I could see the certificate being mentioned in a lot of job advertisements for testers. 

I saw a clear benefit to me in downloading the syllabus, doing some independent study and taking an exam. This activity was going to open up opportunities in a field of work that I might otherwise be unable to enter. I wanted to be a tester, so I wanted to get the certification.

At that time, I saw the value in this professional development for my career.

On the other hand, I have never completed the BBST Foundation course. I have heard a lot about this qualification and investigated the material that is available online. I have advocated for people in my team to attend this course and published the business benefits I used to argue for this opportunity. But I have not completed the course personally.

I did not learn about BBST Foundation until I had reached a point where I had learned many, but not all, of the concepts in the course via other means. I had heard a lot about the time investment required to complete the course successfully. When given the opportunity to take the class, I decided not to.

At that time, I did not see the value in this professional development for my career.

Do I care?

In the case of ISTQB, a manager might have assumed by my actions that I cared about my professional development. In the case of BBST, a manager might have assumed by my actions that I did not care about my professional development. Both conclusions are reached by assumptions, which are present in any communication.

The Satir Interaction Model describes what happens inside of us as we communicate - the process we go through as we take in information, interpret it, and decide how to respond [Ref].

Ref: "I think we have an issue" -- Delivering unwelcome messages
Fiona Charles

The steps in the Satir Interaction Model between intake and response are hidden. This means that the end result of the process that assigns meaning and significance can be quite surprising to the recipient, which can be a catalyst for conflict.

For example, imagine that I give a manager an input of "I do not want to take the BBST Foundation course". I would be surprised by a response from that manager expressing disappointment that I don't care about my professional development.

We can also climb a Ladder of Inference in our interactions, which refers the idea that there's "a common mental pathway of increasing abstraction, often leading to misguided beliefs". In essence, this is about leaping to conclusions.

For example, imagine the same manager who received my negative response to the BBST Foundation course receiving a promotional email for the RST course. They might extrapolate from my previous negative response that I will not want to attend RST, that I don't want to take any training courses, and that it would be a waste of time to forward me an email that describes this opportunity. I haven't had any input into this flow of reasoning. The manager has independently climbed a ladder of inference.

I think we need to be aware of both of these communication models when assessing an apparent lack of interest in professional development - particularly when we're labeling what we see as "most of the people didn't care".

Empathy & Understanding

Let's return to the question of whether there is a need to sell professional development. I don't think so. However, I agree with an alternative phrasing suggested in the session: that we should foster professional development.

When I sell, I am trying to be persuasive and articulate the merits of an activity. My communication is broadcast oriented. I want to share my reasoning and rationale. I try to explain why people should participate. My intent is to advertise.

That "I've been struggling to get people to see the value" is a failure to sell.

When I foster, I am seeking to encourage the development of an activity through understanding the obstacles that prevent it from happening. I want to be mindful of the ladder of inference and the judgments that I am applying to the responses of my colleagues and team. I want to be aware of where I've assigned significance and meaning might have distorted the message that I have been given, particularly when people are saying "no" to an opportunity.

That "most of the people didn't care" is a failure to foster.

I believe that there are relatively few people who truly don't care about their professional development. If there are people around you who you would label in this manner, I'd challenge you to think about how you have communicated and the responses that you've received.

What have they actually said? What meaning have you prescribed? Have you really understood?

I believe that in reflection and inquiry there is opportunity to successfully foster professional development.



Other posts from CAST2016:

Thursday, 14 July 2016

Test-Infected Developers

This article was originally published in the June edition of Testing Trapeze

At my workplace there is a culture of shared ownership in software delivery. We develop our products in cross-functional agile teams who work together to achieve a common business goal. However it’s still relatively rare for specialists to be proactive about picking up work in areas outside of their own discipline. For example, you don’t often see business analysts seeking out test execution tasks and prioritising those above work to refine stories in the product backlog.

That said, I’ve recently noticed an increase in the number of developers who are voluntarily engaging in test-related activities. They’re not jumping forward to think about test planning or getting excited about exploring the application. But they are diving into our automation by helping the testers to improve the coverage it provides, or working to enhance the framework on which our tests run.

As a coach part of my role is to foster cross-discipline collaboration. I confess that I haven’t been putting any active focus on the relationships between developers and testers. It is something that has changed as a byproduct of other activities that I’ve been part of. I’ve been reflecting on what’s behind this shift and the reasons why I believe the developers are getting more involved.

Better Test Code

In the past our test code has occupied a dark corner of our collective psyche. Everyone knows that it is there, but most people don’t want to engage with it directly. In particular, I have felt that developers were reluctant to get involved in a code base that was littered with poor coding practices and questionable implementation decisions. In instances where a developer did contribute, it was often a cause of frustration rather than satisfaction.

The test team have recently undertaken a lot of work to improve the quality of code that runs our automation. In one product we started the year with a major refactoring exercise that allowed us to run tests in parallel, which more than halved our execution time. In another we’ve launched a brand new suite with agreed coding standards from the beginning.

The experience for a developer who opens our automation is a lot less jarring than perhaps it has been in the past. As the skills of the testers improve, and the approach that we take to writing code becomes closely aligned with the way that developers are used to working, it’s no longer traumatic for a developer to delve into the test suites.

In addition, all of the changes to the test code now go through the same peer review process as the application code. We use pull requests to facilitate discussion on new code. There is a level of expectation: it’s not “just test code”. We want to write automation that is as maintainable as our application.

The developers have started to participate more in peer review of test code. There’s a two-way exchange of information in asking a developer to review the automation. The tester gains a lot of instruction on their coding practices. However the developer will also gain by having to completely understand the test coverage in order to offer their feedback on it.

Imperfect Test Framework

On the flip side of the previous point, there are still a number of very clear opportunities for enhancing our automation frameworks and extending the coverage that they offer. The testers don’t always have the capacity, skills or inclination to undertake this work.

I can think of a few occasions where a developer has been hooked into the test automation by an interesting problem in the supporting structure that needed a solution. Specific technical jobs like setting up an automated script for post-release database changes or tweaking configuration in the continuous integration builds. These tasks improve their understanding of the framework and may mean that the developer ends up contributing to the test code too.

Within the tests, there are application behaviours that are challenging to check automatically. Particularly in our JavaScript-heavy applications we often have to wait for different aspects of the screen to update during a sequence of user actions. Developers who contribute by writing the helper methods required for testing in these areas will often end up having a deeper understanding and closer involvement in all of the associated test code.

I believe the key here is providing specific tasks where the developers can engage in the test code with a clear purpose and feel a sense of accomplishment at their conclusion. In some instances, the developer will complete a single task then withdraw from the testing realm. In others, it’s a first step towards a deeper involvement in the test code and subsequently testing.

Embedded In Development

In almost every instance, a developer who is making a change to one of our applications will need raise a pull request to have their code merged back to our master branch for release. As part of the process enforced by our tools, the code to be merged must have passed all of our automated checks. Every change. All of the automation.

We’ve always run our automation regularly, but its relatively recent that it has it become mandated on every merge. This change has largely been driven by the developers themselves who are keen to improve the quality of code prior to testing the integrated code base.

Now that our automation runs many times per day it is in the best interests of the developers to be engaged in improving the framework. If it is unreliable or the tests are slow to execute, it has an immediate negative impact on the developers as they are unable to deliver changes to our applications. They want our automation to be robust and speedy.

The new build schedule has helped to flush out pain points in the test code and engaged a wider audience in fixing the root causes of these issues by necessity. Now most of the developers have experienced a failing build and had to personally debug one or more of the tests to fix the problem. The developers are actively monitoring test results and analysing failures, which means that they are a lot more familiar with the test code.

Conclusion

I see automation as a gateway to getting developers engaged in testing more broadly. When collaborating on coverage in automation, there is the opportunity to discuss the testing that will occur outside of the coded checks. The conversation about what to automate vs. what to explore is a valuable one for both disciplines to engage in.

We’ve taken three steps down the path to having our developers excited about picking up tasks in our test automation. We’ve made the suites a pleasant place to spend time by applying coding standards and ensuring that changes are peer reviewed. We’ve provided opportunities for developers to contribute to the framework or helper methods instead of asking them to write the tests themselves. And we’ve the automation in the development process to create a vested interest in rapid and reliable test execution.

Developers can become test-infected. I am seeing evidence of this in the collaborative environment that is continuing to evolve in my organisation.